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SUMMARY
o

The problem of heat and mass flow in a single phase cryogenic storage

system has been treated. During the course of the project, equations des-

cribing the system were developed, thermod_aamic and transport data were

assembled, and a Fortran computer program was written to solve the problems

Fluids which were considered were oxygen, hydrogen and helium. It was

intended to make the computer program general. In this regard, the pro-

gram can accomodate smy vessel geometry; both fluid withdrawal rate and

input heat leak may be arbitrary functions of time. Although the program

is relatively complex, the supporting theory is relatively simple. The

theoretical concepts which were employed ares conservation of mass, con-

servation of energy, and Fourier's Law for heat flow.

To test the Fortran program, the performance of an oxygen supply sphere

Was studied, Of the initial charge of 27 lbs. of LOX, nearly 2 lbs. were

vented, 23.6 Ibs. were supplied, and 1.4 Ibs. remained in the sphere at the

end of the mission. Fluid temperatures varied from 198 e to over 450"R.

Pressure increased from 80 psla to I000 psia in 786 rain. During the supply

period9 pressures varied +_75 psi about the control level of 900 psia. About

1500 Btu of electrical energy were delivered to the heaters in order to

maintain pressure. These results indicate that the _rogram is operational.
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INTRODUCTION

The storage and supply of cryogenic fluids is important in several

areas of the space program. For example, ocasider the use of static
\

electrical heaters to supply hydrogen and oxygen to a fuel cell system at

pressures within a specified interval. Design of such a cryogenic storage

system requires a detailed thermodynamic analysis_ Included in such an

analysis would be temperature profiles through the stored fluid, heater

surface temperatures, pressure, and heater requirements. The underlying

theory is not difficult, but its application is very tedious. Fortunately,

the problem may be solved by digital computing methods -- so that detailed

designs are neither difficult nor expensive.

The purpose of this report is to describe the development, check-out,

and use of a digital computer program suitable for design of a cryogenic

storage system. Stored fluids m_y be oxygen, hydrogen or helium. A des-

cription of the storage system is given in the Statement of Work, Appendix A_

A word of oaution seems to be in order concerning the use of this

program. The results, even though they are produced by a computer, shoul_

be examined critically. It is not a% all difficult to input an incorrect

data card. The theory, contained in the program, may not alwsys apply

to a real system because of mixing effects. The thermodynamic and trans-

port data used in the program ma_ contain significant errors.

©
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TSCHN. ICAL DISCUSSION

Theoretical Devel o_ents

Heat flow is a_sumed to occur either by conduction or by radiationo

The Fourier law expression for conductive flow is

5T
_--_ _-_ (I)

where the symbols are defined in the Nomenclature section. Only rarely

can (I) be solved for a real system and it is a common expedient %o use

finite difference approximations of (I).

The theory of difference approximations is complicated, and only %he

important results will be mentioned here• In using finite differences,

one divides a physical system into n volume elements (nodal points)• The

larger n becomes, the better will be the degree of approximation %o the

solution of (I)• Practical considerations such as computer budget and

required design accuracy place the upper limit on n• For the simple system

depicted in Fig, i the finite difference approximation to (i) for heat

flow from element one to element two is

"" (Tl - T2)

q12 " kA' /_X -

Th_co_d_io_;_ce,%_2'is kA/Ax=d =_ybe=,edto ,:l.=pz:i._(2)as

qz'2" _2 (% " '2)

(2)

(3)

For conductive flow in solid elements in the system9 K is assumed %0

be constant and must be input cm the 200 type data card (see Input Imstruo-

tions below). Because of the extreme changes in pressure sad temperature,
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it is not possible to assume fluid conductivity as constant. Thus the fluid

conductanoes are computed point-by-poLut. I_ is necessary %o input the

A//_x portion of the conductance, and this is handled on the 201 type d_ta

card (see below)*

E_ermal radiation follows a d/fferent relationship and would be written

as

for exchange between elements one and four. Computation of the _'s is not

always easy but MoAdams I shows how this may be done. Even (4) may be

forced into the form of (3) by defining the radiation conductance

Now the temperature terms in (5) change during computation and this requires

.
point-by-point evaluation of K . The constant factors in (5)_ O-A_ are

input on the type 202 data cards (see below).

Material balance considerations are necessary and are used in a number

of ways. The total balance simply involves

" vlPi(P''i) (6)
fluid elements .

Usually it is necessary to find P such that (6) is satisfied. That is, the

fluid mass and temperature distribution over the volume elements is known

and then the equation is solved for P. A very simple trial and error process

is employed here. As an initial guess a value P, say PI' is used in (6)

and this provides a corresponding mass %. If MI _" _, the assumed PI

is too large and a fixed increment, say 1 psi, is subtracted from P1 to
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Two forms of the ener_ equation are used -- one allowing-for mass

transfer, (9), the other allowin_ for no mass transfer. The former case

can handle only unidire6tional systems while the latter ,an handle any

geometry. For an element of fixed volume, and neglecting flow, the ener6y

equation is

and

_Ei _ " + (Io)

"i"_'i+i_i#i
-_ -:

(11)

The use of (11)in (1o)_ves

•

J

For real flui_ enthalpy depends on both pressure and temperature and

(i2)

. cpd,+ C,di,

The form of the energy equation as used in the program is obtained by

us_,_(i3)in(n) andrsplaoin_Hi _jrip._

(i3)

_-__%_ Gjl "i (1- pc,)v., (i_)

In order to maintain consistent units a conversion factor, allowing for

equivalence between heat and mechanical enersy, must be used in the iast

termof (i_).

When mass flow is included, the ener_equationbeoomes mare o_nplicated,

see Appendix E for details,

_E i • • • •

V:LP-ZT"_ 9J.+"i+'%-I(5.-I"_.),+% (_ -5.) (i5)
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By means of (11) and (13), it is possible to introduce variables P and T

inte(15).

4 Ji
eJ

@ @

+ Fi+mi.1 (Hi.1-Hi+RZ_i)-miZ_i-.Vip (C_-_ZT)_dt. (16)

The machine program is designed t.o solve either (14) or (16), Besides

these options it may also treat the ease of a perfectly mixed fluid. This

situation would prevail if an agitator were used in the storage system.

The completely mixed state is the same as (14), but assumes that only a

single fluid volume element exists.

Equations (14) and (16) are set up for each volume element in the

system and numerical solution is employed. Although these were derived for

fluid elements, it should be easy enough for the reader to develop the

appropriate forms for solid elements. The equations_ regardless of element

type, may be placed in the following form

dT i

°i "_" _ 5i (_j " %) + _i (17)

where Si includes all terms on right side of either (14) or (16) except

the summation terms. The approximate solution of (17) is

(l-u)(Z 5i,_.+_)
i i _° H" it _

(18)_:,.(t+ _St)- =i (t)+

-nt_.,,I_ 5i).
whereU- e_ ( - oi

,Computation starts at i - 1 and runs consecutively th.ro$ the nodes

with new temperatures being used on the right hand side of (18) as they
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are generatedo This method is unconditionally stable2o Thus the computa-

tions will not 'rDiow up': if the wTong ,A_tis usedo However, __ +_.... _-

rude of /_t is too large, the answers may be seriously in error• The only

reliable test of the magnitude of is to run another case w_ a smaller

/_t and check to see that the answers are similar.

Calculation of the dP/dt term requires some discussion. Since this

term should contribute only a small amount to the heat balance, the value

one time step behind is used. That is, for comput_ Ti (t + At) we use

(t)-P,(t- (20)
dt At

This technique, which has proven to be sucoess1%_, saves simultaneous

solution of the ener_ an_ continuity equations. As a result the computer

time for a solution is greatly reduced.

A similar procedure is used on the flow terms of (16). At the en_ of

a temperature computation cycle Ti (t + /_t) is known. The corresponding

pressure P (t + /_t) iB found from (6) and (7). But P and Ti determine
• @

_i,t+At which in turn aetermines mi,t+At from (9). These m values

are supplied to the energy equation and will be use_ to compute Ti (t + 2/_t).
@

Thus the cycle is complete. To start the process both dP/dt and mi are

assumed to be zero•

At arbitrary times during the mission the contents of the storage system

msy be agitated, thus eradicating all temperature gradients. This mixing

process is _e of constant flui_ mass an_ constant internal energy. Con-

tained in the computer program is a subroutine which finds the mixe_

pressure and temperature. This is a double iteration process since both

Pm an_ Tm are unknown. To begin the solution the initial energy is foun_ from
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E'- vipi(H,- ,i)
flui_

(21)

and the mass is found from (6). The initial guess for Tm is the lowest

temperature in the network. =--_.,_A_ __
m

the first values of Tm and Pro' the fluid energy is

v,p(,, (,,)
Now _must be less than E. since the lowest element temperature was used

for Tin@ On the next iteration cycle the value of Tm is increased by 5".

The cycle is repeated q times, constantly increasing Tm until Eq exceeds

E . At this point _ is determ:_ed by linear interpolation from a fol'_l.la

s_lar to (7)

Because of the difficulty of treating heat flow in two-phase systems,

the analysis begins when the system attains single-phase conditions. If

the system is charged with two fluid phases_ it is assumed that sufficient

time, prior to launch, is provided for the system heat leak to raise the

pressure to a single-phase condition. On the other handp if the system is

charged with a single-phase fluid_ analysis begins immediately.

Fig. 3, a plot of pressure vs. density, is helpful in explaining the

starting process. For the test problem presented in Appendix A the average

• I

initial density is 64.5 Ib/cuoft. and fill pressure is 14.7 psia. System

heat leak will increase pressure and the fluid will become slngle-phase

at 76 psia. The corresponding saturation temperature is 197"R. These

values would be used to start the heat flow analysis.

If the initial conditions were a density of 64.5 Ib/cu.ft. and i00 psiap

then the fluid is single-phase. Starting values in the analysis would be

I00 psia and the oorrespunding temperature 197"Ro
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the critical pressure in the pressure vector. Hence the critical values

I

of enthalpy, compressibility, iand thermal conductivity will always appear

in the two-dimensional array.

It is necessary to pick the initial starting pressure within the

bounds of the array, and all resulting machine calculations must be within

these bounds.

The number of significant figures given in the tables is not Justified

on the basis Of the uncertainties of the data, but is presented in order

to maintain internal consistency.

A listing of the data matrices is included in Appendix C. Also included

in Appendix C are the figures based on various correlations which were used

to obtain the desired data. (See sections below on ox_genp hydrogen and

helium data compilation).

I) " OxyKen Data Compil,ation

The extent of the tables is from the normal boiling point (162°R :'

at 1 arm.) to 1620eR and I00 atmospheres.

The enthalpy data, up to 5OOeK, was taken from N:B.S. Report 79225

and from N.B.S. Circular 5655 for higher temperatures_ The compressibilities

were based on density data from Report 7922 and Circular 565.

The lack of accurate thermal conductivity data necessitated extrapo-

lation above 500°K. Figure C-I shows a plot of data from the compend/um3o

In order to obtain values corresponding to the pressure and temperature

vectors 9 linear interpolation was used to 500°Ko The general extrapolatian

form y = mx + b was used above 500°K. There is an apparent error in the

compendium d_ta table. A% 73.16eK, well below the normal boiling pointp
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H
C

be%veen the normal and ps.ra d_t_ sou_oese The hoa_ of oonvorsion was

taken from the oompendlum3, and when substituted into %he above equatlonp

produced a _a_e-- " O.

there is a discontinuity in thermal conductivity from I to 20 arm. It is

expected that the thermal conductivity for liquids is little affected by
i

pressure. Hence, the conductivity at I arm. was assumed the same as that

at 20 atm. Although the major area of interest is to 600°R9 the extra-

polated conductivity data is included to take care of thermal gradients

which msy show up in the system.

A generalized correlation 6 based on dat_ from the compendium was used

to produce values within about 5% of those obtained from extrapolation.

2) H,ydro_en Data Compilation

The extent of the data is from the normal boiling point of para-

hydrogen (36.5°R at Iatm.) to 990°R and I00 atmospheres.

This compilation is d/fficult because of the para-ortho conversion.

Figure C-2 shows the percent ortho compositio_ at equilibrium with normal

hydrogen (75_ ortho-25_ para) prevailin_ above 500°R. In practice 9 the

composition is generally unknown. For the data tables, parahydrogen data

were used from 36.5"R t'0180"R and normal hydrogen values from 270°R and up.

Since both parahydrogen and normal hydrogen values were used in the

enthalpy table, it was necessary to use the same enthalpy base for each

system. The following relation represents the enthalpy balance that exists

. +Ho+ '  ase (23)

is the hea$ of conversion and/_ase represents a_ base difference

Henoe_ the enthall_ data of normal hydrogen taken

0

........ _LL___L ...... - -. -....................
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from NoBoS. TN 1207 and Circular 5645 can be entered in the same table

with parahydrogen data from N.BoS_ TN 1308. For normal hydrogenp Tg 120

was used over the temperature range from 270°R to 540°R and Circular 564

was used for higher temperatures.

Compressibilities were based on density data from TN 1207 and Circular

5645. Parahydrogen densities from TN 1308 differed from normal _ydrogen

densities by less than 5%o Hence_ the accuracy Of the data permits the

use of compressibility based on normal hydrogen for the entire data matrixo

A P-T-V chart for hydrogen from the compendium supplied the liquid

densities. Figure C-3 is a plot of density data extrapolated from TN 120

which agrees well with the P-T-V data of the oompendimn_

The gaseous thermal conductivity is based on a generalized correlation 6

using I arm, data from the compendium rather than a reduced value of thermal

conductivity as a reference. The generalized plot produced values for normal

hydrogen. Parahydrogen values were obtained from a plot of the ratio of

parahydrogen conductivity to normal hydrogen conductivity contained in the

compendium 3.

The conductivity of saturated liquid parahydrogen was obtained from

the compendium 3. Since the conductivity of a liquid is little affected by

pressurep the saturated liquid v_lues were assumed %o prevailat all pressure

levels used in the data matrix. It should be noted that .the errors in the

conductivity data obtained from this correlation may be 30% or more near

the critical pointo

3) Helium Data Compilatiqn.

The extent of the data for helium is from the normal boiling point

(7°5"E at 1 a_.) to 1080OR and 210 atmosphereso
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Enthalpy data to I00 atmospheres and 600"R was supplied by N.B.S,

TN 15410 with high pressure and high temperature data coming from NASA-

H_to_ 1

Figure C-l+ is a plot of density data used to obtain compressibility ._

factors: Compressibility data from NASA-Houston was used above I00

atmospheres and above 54OR.

_e generalized correlation of Gambill 6 was again used for thermal

conductivity. The large reduced pressures of the data matrix extended

beyond the bounds of Gambill 6 requiring the cross plot shown in Figure

C-5. The one atmosphere data compared very well with that of the oompendium.

Note that the possible errors obtained from the oorrelation ,my be as much

as 30% or more near the critical point.

Interpolation Procedures

Linear interpolation in a funotic_ of two independent variables

(pressure and temperature) is equivalent to passing a plane through three

tabulated points. Thus the data surface is represented by a series of

planar areas -- much like shingles on a roof. This is an impossible

representation since i% does not allow the data %o vary in a continuous

mannero

A four point interpolation formula was found tO give good results_

allowing the data to be represented in a continuous manner over the T-P

plane. The theory is illustrated for oompressibility factore

z C%P)- z (so,Po)* _ CT-%) + b (P- P_)'+o ¢T- _o)CP-Po) ¢2_)

©
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The three points bounding .the rectangle whose somthwest corner is (To, Pc)

are used to determine a, b, and c in (24)(see Figure 4).

a El

z (%,5. AP) - z (%,,53 (25)
_" AP .....

O Im

z ,(_o+ _',i,Po÷ _P) z (._o,_),-a_ - b&P
_p, ," ....

The pressure and temperature a% which Z is required is within the rectangle

shown on Fig. 4. The quantities _ and _may be readily obtained from (24)

by differentation,

Because properties may change in a discontinuous fashion at subcritiaal

pressures, four point interpolation is not always possibleo This situation

prevails whene.ver the southwest corner point, Fig. 4, is a subcritical

diagonal matrix element. For th'is special case only three points are

available and Interpolatioa is effeo%ed by passing a p1_e through these

three points.

©

%
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PROGRAM DESCRIPTIC_

General Comments

The above analysis has been incorporated in a Fortran IV computer ._

progrem. The main part of the progrem is entitled DORF and this employs

subroutines ZOT, DATA, SMERSH and GULCH.

Subroutine Z0T performs the finite difference calculation according

tO (18)0 Parameters which must be fixed prior to entering ZOT are the

conductor and oapacltor values over the network and the heat inputs. From

these values ZOT computes a new temperature distribution. ZOT is not

needed in the perfect mixing case.

Subroutine DATA is used to generate conductivity, compressibility

factor, density, enthalpy, Op, OT, ZT and Zp from pressure and temperature.

Whenever the input pressure or temperature exceed the bounds of the tabu-

lated data, an error message is output and the program terminates_ ,,

Subroutine SMERSH and GULCH are very s4m41ar. SMERSH generates time

varying mass withdrawal rates while GULCH generates time varyir_ heat leakso

The vectors Jan, Jim, Jack and Jill require some discussion. For a

system of arbitrary oo_figuration there will be M volume elements (nodes).

Handliug such a system on a computer is a tedious procedurep and this

procedure will be sketohedo _he elements are assigned the first M integers

as labels and may he in a_7 order (except as noted above for the mass

transfer option).

A total of N conductors appear in %he network and these are identified,

upan input, by the two node numbers which %he conductor Joins. Althou_ a
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pair of node numbers is s.u/fioient to identif_ a conductor, and-program

assigns each conductor an identifying number, see Table L This table

is constructed for the sample problem described belowo

0

©

Table l

Illustration of Jan and Jim Tables

Conduoto_ Index (Z)

2

3

4

5

6

7

8

9

I0

11

12

Conduo tahoe coefficients

Jan(z)

I

2

2

7

3

4

8

2

7

3

4

8

5

4 5

5 6

6 9

7 8

8 9

A/_x, are stored in XNDR(1) where I COrTesponds

to the index t- Table I. These XNDR coefficients are neoeessmy %o compute

the oorrespondin_ conductance values which are stored 'in the CNDR vector.

- "Z'

Although Table I is su£fioient to describe the network, oomputiu_

time may be reduced by plaoin_ these data in another form. The Jack and "

Jill vectors serve this purpose. Finite dif£erenoe oemputatione_ pergormed

by ZOTp start at node 1 and continue sequentially through all nodes.
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Entries in both Jack and.Jill are arranged in blocks which ar.e._eperated

by zero. Each block provides conductor and node numbers pertaining to a

single node. Table II is a partial list for the data of Table I. Con-

rained in Jack are conductor numbers from the left column of Table I.

In Jill are the corresponding node numbers. For example node 1 is Joined

by conductor 1 to node 2. Thus the entry in Jack is 1 and in Jill is 2.

No other conductors join node 1 to other nodes so the block is terminated

by a zero. Node 2 is Joined by conductors I, 2 and 3 _o nodes I, 7 and

3, and this comprises _he second block in Table II. The program sets-up

these tables for the entire network (only results for the. first three

nodes are shown in Table II).

_j

\

O

Table II

Illustratic_ of Jack and Jill Tables

Index, J

1

2

4

5

6

J,=k (j)

1

• 0

1

2

3

0

Jil (J)

2 _ Node 1

Jo

1

?
Node 2

3

0

7

8

9

10

3

4

5

o

2

7
Node

0

©
#
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ProaTam Flow Charts

Figs. 5-9 show the logical sequence used in the program. Because of

the length and complexity of the program, it is not possible to show every

step. The main program begins by reading the network data, sets-up a

number of tables, and proceeds through the solution of the program. Sub-

routines _ and GULCH are not illustrated as they are so simple.

Each only involves six Fortran statementse

Input Instructions

In order to solve a storage system problem it is necessary to prepare

a number of input data cards. This is a very crucial _art of the solution

process as key punch errors, out-of-place cards, or decimal point errors

will surely cause trouble. Pig. I0 shows the ordering of these cards.

Only the last block, the thermodynamic data cards, is supplied with the

program cards. All other blocks must be prepared by the program user.

Cards within the Network block, with the exception of the 301 cards, may

be in any order. See the following list for detailed instructions.

Numbers following the definition of input items are IBM card column loca-

tions.

DATA GAP,/) i, FORMAT (I$, 7EI0.0)

MWT - molecular weight of fluid in the system, columns i-4.

QLEAK - heat leak rate into system, BTU/min., average value from

fill time to time PMAX is attained, 5-I$e

VOLUME - fluid volume Of the containin_ vessel, ft 3, 15-25.

ZASS - total mass of fluid in the vessel, Ibs., 25-_.

ZIQMAS - _tal mass of fluid in the liquid phase, Ibs., 35-_e
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PZERO

PMAX

TTWO

rains., 65-74.

DATACARD2, FORMAT(514, 4E15.5)

LYDIA

LULU

LISA

gIM

IEIME

DTIM

DELP

FLUX

- initial'prsssure, psia, 45-54. -"

- system delivery pressure, psia (900 psia in sample

problem), 55-64.

- time at which fluid wi_drawal begins for system use,

- number of solid nodes, 1-_.

- number of gas nodes, 5-8.

- number of solid conductors, 9-12.

- number of gas conductors, 13-160

- number of radiation conductors 9 17-2Oo

- computing time increment for program except as below,

sin., 21-35.

- computing time increment while heater is on during

main supply phase, mln., 36-50.

- pressure span (plus or Linus) about PMAX for heater

control, psi, 51-65.

- total heater output, BTU/mln,, 66-80.

NETWORK DATA 0ARI_, FORMAT (314, 3EIS.Sj 214)

I - 200 signifies solid conductor, iJ+.

J,K

LULU

NUMBER 0r
CARDS IT

Nodes to which solid conductor is connected, 5-8

and 9-12.

Couductor value_ computed by multiplying the oonducting

area by the conductivity and dividing by the oonduot-

ance path length (held fixed), BTU/min *R, 13-27.

X_ I 000, 28-42.

_z- 000, 43-57.

(leave last two integers blank)
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LISA

NUM3EROF

CARDS

EIM
_o_
CARDS

I= 201
h

9_
lj

signifies fluid conductor, l-A, --

3tK Nodes to which fluid conductor is connected t 5-8

end 9-12.

XZ Conductor len_thp computed by dividin_ the conducting ,

area by the conductance path len_h, ft. (multiplied

by the conductivity in the program to obtain a con-

duotor value. The conductivity for the fluid volume

is a function of the local pressure end tempera-

tare.), 13-27.

XZ - 0.0_ 28-42.
t

YZ- 0.o, 43-57.

signifies radiation conductor, l-A, ....

J,K Nodes to which radiation oondnotor is connected, 5-8

XY Computed by multiplying the gray body view facet

times the view area by the Stefan,-Boltzmann constant,

:S_/,_Ln. "R, 13-_.

XZ. 0.0, 28-42.

(leave laal %_o integersblank)

/

©
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signifies" sapacitance values, I-.A.

J

K-

XI

XZ

Index on the total number of nodes, 5-8.

0, solid nodes, 9-12.

Ckpaoitance of the solid nodes, @aloulated as the volume

of the node times the density of the node by the

speoifio heat of ths node, BTU/OR, 13-27.

Fraotion of input heat leak entering node J. d/men-

sionless, 28-$2.

ra Fraction of heater out_u_ entering l_od.e J. d.lmension-

lees, 43-57.

(leavelasttwoirately. :

J T.ndex on the total number Of nodes, 5-8_

K- It fluid nodes, 9-12.

XY Node volume, cm., ft., 13-27.

XZ Fraotion of input hea_ leak entering node J, &Imension-

less, 28.2+2.

r_ o,o, 43-57

(leave last two integers blank)

sisnifies end of capacitor and conductor input, 1.2_.

J Number of time increment steps between printout for

pressure rise and venting calculation pa_ts of mission,

5-8.

K Number of elements in STIR veo_or, see below, 9-12.

XT Maximum pressure for venting during supply part of

mission, psia. (For proper heater control XY must

be grea_er than PMAX+ IELP), 13-271 _'



O

25

XZ_ Maxlmnm time allowed for filling and withdrawal (program

%erminaSes at this time or when mass becomes 5_ of

original fill, whichever happens first), 28-42.

YZ -I.0 for complete mixing optio_p otherwise O.0 or +1.06

If +I.0 is used, the problem is reset with the mixed

pressure and temperature upon exit from Subroutine

MIXUP. If 0.0 is used, the problem retains the

original temperatures andp_ss_re upon exit fr_n

NAN

MIX , 43-57.

Number of time inoremen% steps between printout for _

supply part of mission, 58-61o

Mass flow option, If NAN is negative, mass flow is

computed. If NAN is zero or positive, no mass flow

is assumed, 62-65i " 'I'

 c,mR (2too.p)

STIR (I) - enter the times, in mino at which the MIXUP sub-

routine is to be e_tered. The times must be in order and the

E

NUMBER OF first should be greater than or equal %o TTWOo The last time
CJm_S

should be greater than XZ of the 301 card %o prevent over-

rt=min_ of the vector, 1-20;
r

Leave second number blaak;

TIME VARYIN@ MASS WI"_DRAWAL OAR._, first _ uses Forma_ (I_) and otha_s are

For t (2m0.5)

1 Card Only K M_er of cards in veo%ors-DOSX and ROSA, I-$,

0

""' " C --'_ ........................... • •
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_x.(z) _. _iss±onti_eleesthanDOSX(I)me we _pp_

rate is ROSA (I-1), Units are minutes. DOSX(1) is

n_ver used and I --_I __ K, 1-20.

ROSA(Z)_pp_ _atein_ts orm_/=in.(These_ wed in

Subroutine SMEE_), 21-4o;

TIME VARYINg HEAT LEAK,_first card uses Format (I4) and others are Format

(2mo.5)
K Number of cards In veotors PUFF and SPOT, 1-4.

z,on(z) For _e "ess thanZUn(Z) the _t,a s_t_= heat z._

is SPOT(I-l). Units are minutes. PUFF(l) is never

used and 1--_ I--_ K, 1-20o

SPOT(I) Total heat leak in units of BTU/min, These vectors

are used in Subrou%ine GULCH. This total heat leak

is divided among %he nodes according to _he: XZ entry

Of the _00 network cards, 21-40,

1 card om_

THERMODYNAMICDATA CARDS

TEMPERATURE VECTOR, °R

PRESSURE VECTOR, °R

HDATA,zDATABTU/lb "I'
CDATA, BTU/min £_ °R

_ma_ (no.5, z_, 62x, I_+)

z,oma_ (no,5, z_, 62x, z#)

_O_AT (8F9.4, 2I$)

\

©



A

ii

f
II
,I !

II

0 "

#

o

o

I,-

T

O,

W



28

©

0

©
+FIGU_ 6 FLOW CHART FOR ZOT'



©

O

• i

29

| ,, |

)
2O

22

J.I.DP,DT

Toot P

T

Test T

Tearer0

X-I+8

.(WPOR TABLE)

FOUR PT

I_I_RPOLATI(_

© FLOW" CHART POR DATA t.

, 4'.



O

O

CALL

EXIT

IP - IP+l

INCR. TIME

TIME E TIMAX

355

IP EIT

IP. 0

LP

30

IP . IP+I

TIME £TIMAX

ZASS _ .05ERP

IP ELP

WRITE

L

O

PIGm_E 8 FLOW CHART FOR PERFSCT MIXING ANALYSIS"

-Z _
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Data Preparation

SAMPLE PROBLEM

In order to apply the finite difference portions of the program to

the 11.14 in. diameter sphere oonta/nlng oxygen (see sample problem in

Statement of Work, Appendix A), the sphere is partitioned aooording %0

Fig. Ii, Nodes 1 through 6 are Fluid nodes, nodes 7 and 8 are the

spherical heatersp and node 9 is the outer shell.

input is based cn the following speoified oonditions and sample

calculations 8

DATA CARD I

_WT - 32

0.061 B_/_

VOLUME - 0._18 t_ _

ZASS -

ZIOy_S -

PZ_RO -

PMAX

TTWO -

DATA CARD 2

IRMA

LYDIA

LULU

LISA

26.97 lbsA

26.97 ibs.

14.7 psia

900 psia

ii@60 ain.

- 5 (nodes numbered 7 to 9)

- 6 (nodes numbered 1 to 6)

speelfie_ for sample Problem, Appendix A

-0 (since thickness of heaters is negligible)

m I0 (see Fig. II showing the oonduobers and the nodes they

oozineot)

©
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KIM - 2 (nodes 7 and 8, and 8 and 9 are r_dlatively coupled! radiation

between 7 and 9 due to holes in heater 8 was assumed negligible)

(problem speoifloa%iom)

9TIME . l.Omin.

DTIM - 0.Smln.

D_%P - 50 psi

FLUX - 2.0 B_/nLino

Sample calculations for conductor coefficients and oapaoi,_noe now

follow. Consider a condnctar coefficient for the conductor between nodes

and 4,

XNDR . conducting area/path length

9.6
rm - 2.850 in. is the mean radius between nodes

and 4, see r 4 of the right column of Fig. 11.

Now_- r 5 - r 4 - 0.887 in. where the rts

I

are conductor radii from the left column of

Pig. ii,

Thus the @oe£fioient on the 201 data card, AppendlxB, which applies to the

conductor Joiningnodes 3 and 4 is 9.6 ft. Ten coefficients must be cal-

culated, corresponding to each of the ten conductors shown on Fig. 11.

Nodes 2-3 and4-5 are conneoted_throughholes in the spherical heaters.

In this case the conduotln_a_ea is the area of the _oles in the respective

heater surface, "

Because of the high conduotivities of the me$_l elements in this

system, no solid conductors were used.
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A corresponding value for radiation is oaloulated by _,_!+Ji=_v_g the

gra_ body view £aotor times the view area by the Stefan-Boltzaam_ oonstan_.

Henoe, between nodes ? and 8,

. _TTz2cr
I 2 B%n

- 47[ ii_ ft2 (2.855 x i0"II ft2min._R-_

XNDR- 8.99 x 10"12 Bta
_._

The oapa_i%anoe of the solid nodes is oaloulated as for node 8!

_e_fore

CAP- VOL (Densi%y)(Cp)

V0L - =:(_F''82-: : •_(Thickness)
2

where division by 2 accounts for holes in the heater shell.

vo,- (_.28)(3.8oo)2(.o25).2.27_. _..

CAP. (2.27)(0.318)(0,090)

= O.O@+8B%u/@R,

The volume of the fluid nodes is also needed*

voL._(,63 - rs_)

node radii r6 - 4.685 in,

voi. = (_.1B89)(_7.96o)
1728

VOL - O,116 ft_

=5 = 5.925 _,,.

In addition %o heat oapaoity input it is necessary to apportion input

heab leak and hea_er power among _he nodes. This apporti_men.t is performed
L

by means of a set of positive fraoticns of sum uni_y, For this problem
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0

0

0

c_m_oa mu)xz

r 1 = I._PP _.

r_ = 1.963 £,:._

r_ = 2._8 in.

r 5 . %325 _.

z 7 = %86_ _.

r9 " p.z27 _.
_0 = 5.570 in.

];OI)Z. ZULI)ZZ

4

x,I = o.0 £I=.

r 2 - o.950. _.

r I - z.9oo ix,.
=3 = 2,025 :lax, ,

•r 4 = 2.850 _.

z.8 . 5.800 :Ln.

=5 = 3,925 £u.

z.6 . _..68p in.

x.9 = 5,57o in.
<,4, ' *
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the input power fraction for node 7 is 0.2025: and for node 8 a Value

of 0.7975 is used. No other nodes receive direct input power, thus the

in!n_t frantion is zero for these other nodes. This set of fractions is

listed on the 300 data cards of Appendix B. An iden%ioal procedure is

used for the input heat leak.

Results

Trial runs were performed using the above input data in order to

verify the consistency of the program. Pigs. 12, 13 and I@ show results

for a test l_'O_le_

Fig. 12 shows how fluid mass varies with _Lme for a problem using

finite differences and allowing for mass flow be%ween elements. The time

required for the heat leak (0.O61 Bt_z/mi_.) to take the initial charge to

a single phase pressure (80 psia) is 6978 mine. It is at this time that

the problem really begins. During the period from 6978 to 7760 ,dn._

system pressure increases from 80 to I000 psia while fluid mass is held

fixed at 26.97 lb. From 7760 to 11460 rain. pressure is held constant at

I000 psia and the mass is reduced to 25.2 lb. by venting fluids. At this

time mass is removed at the constant rate of 0.O103 lb./rain., as indicated

by the oonstent slope of this portion of Fig. 12. To demonstrate the

ability to change supply rate, the rate is increased to 0.02 lb./rain, at

13000 rain. The problem terminated at 13382 rain. when only 5_ of the

original fluid mass in the system remains.

Pigo 13 shows the temperatlzres of elements I, 6 (fluid) and 7 (a

heater). I_zriz_ the pressure rise and ventlng portions of the missionp

small temperature gradients exist over the system. For the supply period

i |
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element 7, a heater, shows a sharp_ rise and_ decay of temperature" cause_

by the on-off control system. Fluid temperatures also rise and decay but

with much lower amplitude. Gener_d_!yj the +.empera_ures 8how a tendency

to increase as fluids are removed.

Fig. 14 shows pressure variation with timeo Behavior during pressure

rise and venting periods follows the expected variation. During the supply

period, fluotnations are observed and these are caused by on-off phases of

the supply heaters. Control is such that the heater is on for pressures

less than 850 psia and off for pressures above 950 psia. Toward the end

of the mission_ as the stored mass is sufficiently reduced, pressure fluotna-

tiorm increase in smplitudeo At 13150 rains, the vent pressure of I000

psia is reached and additional fluid" is vented in order to maintain pressure

at I000 psiao The amount vented in this manner is not great, about 1%

of the initial ohargeo

Figs. 15 and 16 show _emperature and pressure calculations for the

same problem with the exception that no mass transfer effects are oonsideredo

General trends for the two sets of calculations are very similar. Slightly
Q

greater temperature gradients exist in the latter case, which is no surprisee

Electrical input in the former ease was 1428 B%u and in the latter case

1482 B%u were oonsumedo For this problem mass transfer effects do not

seem very important.

Fig. 17 shows temperature and heater flux for this storage system

based upon calculations assuming perfect mixing within the fluid. Tempera_

tures follow the general trend of Figs. 13 _ 15' Flux variations reflect

both ohan_s in fluid physical properties and the manner of tabulatin_
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thermod_amio data. The analysis here is different from that used in

producL_ Figs. 13 through 16, Here pressure is mixed and solutions give

heater flux. The previous results assume constant heater rating, 2 Btu/mtn, t

and solutions 81re pressure fluctu_tions resulting from on-off heater

controJ_ Electrioa/. energy consumption Is 1900 Btu) a somewhat higher

fisure from those noted above. This higher fisure reflects the fact that

more enersy remains in the system. Fluid temperatures on Pig. 17 reach

900¢R vhtle those of Figs. 13 and 15 are on the order oF 500°He

Pressure ohan_ fTon mixin8 effects are shown in Table III_ At the

times indicated _e adiabatic mixing routine (MIXUP) was called, In every

case the mixed pressure was lower than the unmixed pressure. At 12000 s_,

the most drutio chen_e was noted! it was a drop.of 178 psi,

Table III

Pressure Chanses From Mixin8

Time Pl'essuro

mtn, psia

11500 861

12ooo 9_4

125oo . 9Ol

13oo0 9t_

(_tpu t ,P_,_nple e

Mixed Pressure

ps£a

8.50

756

896

89_

Mixed Temperature

oR

_ 2 5 l

265

•28¢

321

Tables IV, V and VI show selected, output pe_es f_om the test problem

described in FL6s. 12-1#, Table IV illustrates the prelLminary output as

well as the First level of output for the pressure rise portion of the

computation. Because of the extensive use of headings, the table should
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be easily understood. The first lines identif> the storage fluid (oxygen,

hydrogen or helium) and some of the input data. If the mass Flow option

is calledp as this problem doesp the message "Mass Flow Between Fluid

Volume Elements" is obtained, The next line gives the standby time --

time necessary for input heat leak to bring initial oha_ge to a single

phase state. Also shown on this llne are starting pressure and tempera-

ture for the finite difference calculation. If venting is necessary, as

is the case here, the time at which venting pressure is attained is shown.

Because of mixing effeote this is not sxactly the same as the time which

would be computed by the finite difference technique. If additional heat

input is necessary, the amount required would be shown here. Output from

the finite difference calculation follows. At each level both time and

pressure are shown on a single line. Next the time step criterion is

shown (1.25) and the following integer (7) is the node at which this value

was obtained. This information nLight be useful in preparing subsequent

problems. For example, by changing the network configuration in the sub-

sequent problems, it might be possible to employ a larger time step.

Finally, the temperature distribution is showne

Table V illus_rates output for the venting calculation. Pressure is

held fixed at I000 psia and mass is reduced as •the temperature rises. The

word "Venting" at the right of the table identifies this mode of operation.

Table VI illustrates output for the supply calculation. The heat flux

column shows whether or not the heater is on. If it is on, the entry is

the total heater output. If it is off, the entry is zero. The heat input

©
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column gives oumulative elec%rioal energy supplied via the heaters. The

excess vent column indioates total fluids vented during the supply pa_t

of the cs/culation, At time 13000,6 rain, the pro_am entered MIXUP. _e

mixed pressure and temperature were found %o be 942 psla and 325.9"R 9

see Table VI. The unmixed pressure, as the _ble shows, is 973 _ia.

0

0

1117 ..... l---ilJ, : f..................
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RECO__MM_IqDATIONS AND CONCLUSIONS -

b

Daring the course of %he project a number of problems were treated

in a fashion that left something %o be desired. These problems will be '

ennumeratod here, and, hopefully, they can be handled in a more rigorous

manner later.

i. The necessary thermodynamic and transport data for oxygen, hydrogen

and helium are not ava/lable. Conductivity values for helium in %he regions

of interest were conjured up from a generalized correlation 6. No single

re,or% was sufficient to cover the required range of pressure and tempera-

ture -- thus different sources had to be pieced together. It is not

diffloult to find obvious errors in the Compendium 3. In view of this

•situation it is recommended that generous factors of safety be used on

equipment designed with these data. Because of the importance of these

data, it would be advisable for NASA to acquire and assemble a consistent

set of thermodyaamlo and transport properties for oxygen, hydrogen and
e

helium.

2e Hydrogen exists in two forms -- ortho and para hydrogen. At low

temperatures the para form predominates, but at higher temperatures the

concentration of ortho increases until the mixture termed "normal" hydrogen

is attained. Heats of formation of these species are different, and a thermo-

dynamic analysis of the problem requires a knowledge of the concentration

of each species. It was assumed that the conversion from ,arm to normal

hydrogen occurred between 180eR and 270eRe If data are available on this

problem, it should be incorporated in the data tables.
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3. In the analysis i_ was assumed that only the energy and-continuity

equations were neoessary to solve the problem. The momentum equation was

dropped by assuming the pressure to be oonstan_ everywhere in the system.

This may or may not be a good assumption. Even minor pressure gradients

might cause significant fluid motion in low gravity conditions. Since

both theory and computers are available to treat this problem t the

validity of the assumption should be tested.

4. The program has only been tested for the rather limited problem

in Append/x A. A number of other cases should be run to test the program.

Problems in h_drogen and helium systems have no% been studied.

Because of the nature of this effort -- writing a computer program,

%he number of conclusions is not very extensive. It seems safe to say

that the storage problem Oan be analyzed effectively via digital computer

-and-that the results will be useful in hardware development and interpre-

tation of fli_t _est data,

._ ,..

o
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A

CAP

CI

C

CT

E

.M-
E

It

K

tl,
K

k

P
m

" q

r

T

T
m

t

U

- area for hea_ £iow_ sq. fie

- thermal oapaoity of nede i

-m
m _--_p t

_H B_/I_., psi.

. internal ener_, B%u/lb,

- total fluid energyt Bin.

- ener_ input into element i f_cm heat leak _ heater current,

Btu/miu. "

- enthall_, B%u/lb.

. canduetanoet Btu/n_n._ ere

- radiattaa eonduetanoe, Btu/min°, e_

- thermal oc_duotlyity, BrieR, f'l;. t Line

- eonduotanoe path leng_ht :in.

-mass in element it lbe

- total fluid, mass, lb.

- mass flow leavi_ the right aide of volume element t, lb./n_n_

- mixed pressure, pstao

- heat flow rate_ Btu/min.

. gas eons_ant, Btu/lb.p °R.

. radiusp in.

. tempera%ure t °R*

- mixed temperaturep °R,

- time, mtn.
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VOL

V T

X

Z

ZT

- volume of elbmen% i, @u. .'_,..
°-

°.,

- volumep cu. f%.

- volume of a_- fluid ,,I.._,,,l_t u-..b.

- distance variable

- compressibilit7 fao%or

_)Z
- -_-_,"R"I.

_Z psi-le
- _p,

- time incremen%_ mine

- gray body view faotor

- fluid density a_ pressure P and %eapera%1Lre Ti, Ib./eu. ft.

-s_r,m-_ozt,._,moo_t_t, 1,_/,u,..q.z_' -R_.
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©

SCOPE

An analytical study shall be performed to establish the transient hea_

and mass transfer characteristics of a superoritioal cryogenic storage

system in a zero "_' environment. The information which is+ developed shall

include _ransient temperature profiles in the stored fluidp heater surface

temperatures, and vent rates. Only one specific heater design and fluid

shall be considered. The results of this effort shall be a geperalized

computer program for transient three dimensional heat transfer analyses

of spherical cryogenic pressurization heaters, which has been checked out

with the problems stated herein,

SYSTEM DESCRIPTION

The system shall consist of a spherical vessel with two internal

oonoen_io spherical heaters. Fluid shall be withdrawn from the system

in accordance with the flow histQry shown in Figure 1 from a withdrawal

port located at the top of the vessel,

The vessel wall shall be considered as the system boundary with a

uniform heat leak across the wall of 9,68 Btu per hour. The inside diameter

of the vessel shall be 1161@ inches. The two concentric spherical heaters

shall have inside diameters of 9.8 inches and 7.6 inches. The heaters

are constructed of copper 0.125 inches thick. The heater spheres shall

have 50 percent of the surface area removed with lightening holes %0

©
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pTovide for circulation: _The holes may. be assumed to be equal_-s_oed

over the two heaters_ and are approximately. OeSO inches in d/ame_er, The

heat input f_om the heater_- to tb_ ._l".idmay be ass-.,-ed_o be equal for

each unit area of hea_er m_'faoee

The withdrawal pert shall be l_ated at the top of the vessel and

shall be .0,50 inches in diameter,

Problem interest shall begin upon completion of vessel filling an_

continue through the complete cycle of flow demand, The vessel shall be

loaded with 26.97 Ibm of'LOX, at 163"R0 and at 14,69 psia, After filling,

the system shall be sealed and pressure allowed to rise until an operating

pressure of 900 psia is reached, The system shall then enter a vented

standby conditio_ until the normal supply l_rtion of the mission is reached,

Once operational pressure is reaohe_ the system shall operate in a oonstan_

pressure mode, The power requirements shall be calculated as a part of

this program, All input energy must be assumed to enter the system from

the heatersp with the exception of 3,68 Bin per hour which enters through

the vessel walls,

The overall system schematic shall be as shown in Figure 2, The

gravity profile shall be as shown in Figure 3,

Statement of Work - I_lete from the 4_h paragraph 9 Sta%emen_ of Work_

3.0 System Descriptionp of Reference (b) Operations Directive the sentence

which readss "Once operational pressure Is reached the system shall

©
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operate in a oonstant pressure mode." The following sentenoe shall be

eubstituteds "Onoe operationa_ pressure is reaohed the system shall

operate within a range of plus or minus 50 PSI of the operational pressure."

The following sentence shall be added _o the above referencea $_h

paragraphs "_ heater inpu_ _a_e shall.'be 3600 B_U/_ for the actual

•hea_cer area, '°
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© Appendix D

List of Variables

D-I

©

O -Oonduetirl_, BTU/°R, ain., ft.

CAP .... A vector whose elements are thermal capacitances, BTU/°R

CCT -Variable for enthalpy interpolation, BTU/Ib

CDATA (Jp I)-A matrix whose element in row J, column I, is the conductivity

at temperature T_4CJ) and _ressure PR(I), BTUlmin. "Ro, ft.

CNDR .A vector whose elements are conductor valuesp BTU/min. °R

COP

COT

CP

CS

CT

DELP

DELT

DENSE

DETEE

DO3X

DP

DPDT

DT

DTIM

DTIME

-Partial derivative of conductivity with respect to temperature

-Partial derivative of conductivity with respect to pressure

-Partial derivative of enthalpy with respect to temperature

-Total capacity of solid nodes, BTU/°R

-Partial derivative of enthslpy with respect to pressure

-Pressure differential for heater control, psia_ heater is off

when pressure exceeds PMAX + DELP and on when pressure is
lower than PMAX- DELP '

-Mixed temperature increase corresponding to time step DETEE, °R

-Working variable

-A vector whose I_ element is the fluid density, lh./ou, ft,, a_
node I at the previous oomputing step

-Computing increment, rain,

-A vector whose elements mark times at which fluid supply rate

chan_es, see input instructions

-Difference in pressure between columns in data table

-Rate of pressure ohan_e, psi/rain.

-Difference in temperature between rows in data table

-Computing increment when heater is on

-Computing increment except as above
.0



/

D-2

_0 •._w_uid mass at be_ of time step; lb. w

EOI_ -To_il enersy of all fluid no_es t BTU

A_ALJ_ --T.,_,4 4.4 _1' man_ IP ---w

F

FLOW

FOLD

-Variable for density interpolation

-A veot_ whose elements are flow rates be%ween

-Workimg variable

nodes, Ib/miu.

FLOX

FR

-Total heater ratlug, B_/zLi_

-Density, Ib/cu.ft.

©

H -Enthalpy, B_/Ib,

HDATA (J, I) -A matrix whose element in row J, column I is the enthalpy a%

temperature TEM(3) and pressure PR(I), B_/lb.

HI

HTWO

RV

-Saturated liquid enthalpy at PZERO, BTU/Ib.

-g_thalp¥ of the system at two phase boundary, BTU/Ib.

-Saturated vapor enthalpy at PZ_O, BTU/Ib.

HZER0 -Average initial enthalpyp B_/ib.

IP -Index parameter for print, out

IRMA -Number of solid nodes

IT .Number of computing steps _tween print out for pressure rise

and venti_ operation

JACK -A vector whose elements are conductor numbers, a zero element

is used to distinguish between conductors attached from one
node and those attached to another

JA,(1) -Vector such that the I_element is a node connecting conductor I

JILL_ -A vector whose elements are node numbers -- if there are N

conductors and M nodes in a problem, _here will be 2N ÷ M
elements in JACK and JILL

JIM (I) ' -Vector such that l_ element is a node connecting conductor I

©

JIP -Integer variable

-IRMA+ 1



D-_

©

©

©

ElM

LILY

LINDA

LISA

LISP

LOLA

LOLITA .

LORA

LP

LUaY

LULU

LYDIA

MABEL "

MANC_A

MANDY

MWT

NAN

NCNDR

NOD_S

P

PC

PEMAX

PMAX

-Number of radiation conductor8

"-LULU + 1 i

-Zuterpolation variable

-l_umber of fluid conductors

-Number of elements in STIR veot_.

-LULU + LISA + I

-A veotar used to distinguish betveen, solid and fluid nodes
-- the first IRMA elements are all the solid node numbers

-Number of elements in JACK vector

-Number of computing steps between print out for supply portion
of operation

-LULU + LISA

._umber of solid conductors

-Number of fluid nodes

-Variable used to control exit from instructions which compute
ZSAZSA

-Indexing variable of the STIR veetor

-Node number having ZSAZSA

-Stored fluid molecular weight

-Variable used to distinguish between mass transfer operations
-- NAN is negative implies the mass flow terms are included

in the energy equation, otherwise the mass flow terms are
neglected

-Total number of conduotors_

-Total number of nodes

-The pressure p pals, used by the DATA subroutine for computing

density, compressibility, enthall_ and conductivity

-Critical pressure, psi&

-Pressure in psia at which both fluid supply and venting ooou_

-Supply pressure, psia

I



©

©

©

POLD

PR

PSAVN

PTWO

PUFF

_0

QDOT

(-r)

qs(I)

R0

RII0

RH00

R0

ROI..D

ROSA

RP

RT

-Density,

-Density,

..pr.essu__ at .preoedi_ oomputiug step, psia .....

.A veotur whose elements are pressure, psia, for example PR(I)

gives the pressure oorresp_ding to column I of the enthalpy

_6L_U

-Pressure in system before mixing, psia

-Pressure of the system at two phase boundary, BTU/Ib.

-A vector whose elements mark times at which input heat leak

changes, see input instructions

-Pressure at filling, psia

-Actual heater output, BTU/min.

-Fraction of input heat leak entering node I

-Input heat leak, BTU/min.

-Fraction of total heater input entering node I

-Variable for density interpolatiem, 1_./ou. ft.

-Gas constant, psia, ou, ft./Ib., °E

-Average density, Ib./ou. ft.

-Critical density, Ib./ou. ft_

ib./ou, ft.

ib./cu, ft,

lb./ou, ft.

.A vector whose elements are fluid supply rates, see input
instructions

-Variable for density interpolation,_ ib./cu, ft., oR

4

-Gas constant, BTU/Ib. *R

-Variable for density interpolation, lb./on, ft. psi

-Variable for density interpolation, Ib./ou. ft.

-Variable for density interpolation, Ib./cu. ft.

-Variable for density interpolation, ib./cu, ft,



©

©

©

SLOPE

SOLD

SOURCE

SPOT

ST

ST= (I)

SUM

SUMF

SUMK

SUMKT

SUMV

SUSIE

T

T_MP

THALP

TIMAX

TIME

TONE

TP

TSTAR

TTWO

D-5

°

-Slope of a l_ne .........

-Working variable

-A vector _iving _.I h-at 4___pu%_^_+_.-+_^- _--- _--_

heater outpu%p pressure changep BTU/mln.
\

-A vector whoso elements are heat leak rates, see input instruotlons

-Time necessary to bring the system from an initial fill having

two phases to a single phase condition, rain.

-This vector gives mission times at which stored fluid is %0 be

mixed, rain,

-Working variable

-Cumulative heater output, BTU

-Sum of conductor values attached to a node, BTU/min., *R

-Sum of products of conductor values and temperatures for a node,
BTU/min.

-Chmulative fluid vented during supply time

-Option parameter -- see input instruction list

•-The temperature, "R, used by the DATA subroutine for computing
density, compressibility, enthalpy and conductivity

-Critical temperature, °R

-A vector whose elements are 'temperature, OR. For example TEM(J)
gives the temperature corresponding to row J in the enthall_ table

-A vector whose elements are node temperatures, °R

-A vector whose elements are enthalpy, BTU/lb

-Time in mino used to stop program

-Lapsed time since filling, rain.

-Temperature of the system at two phase boundary, OR

-Mixed fluid temperature, °R

-An interpolated saturation temperature, "R

-Time for fluid supply, measured from fill time rain.



O

O

TZERO

U

VENT

VOL (I)

.o

-Saturated temperature a_ PT_tO t "R .......... "

-At _..K:£/OAP(I), dimensionless i

-A vector such that element I is the volume of fluid node I

VOLUME -Total stored fluid volume, ou.'ft.

X_T -Stored fluid molecularweight in floating point form

XHDR -Conductor coefficient, for fluid conductors this is transport

area divided by conductor path len_h_ ft., but for radiation

conductors it is the product of the.Stefan Boltzmann constant,

area, and view factor, BTU/min., 'R_

Z -Compressibility factor

ZAP -Exit mass rate, lb./rain.

ZASS -Stored fluid mass, lb.

Z3ATA (J,X) -A matrix whose element in row J, column X, is the compressibility

factor at temperature T_(J) and Pressure PR(1)

ZDOT

ZILC_

.-Fluid supply rate, lb./rain.

-An intermediate variable used in the DATA subroutine

ZIQMAS

ZP

-Liquid phase mass at fill time, lb.

-Partial derivative of Z with respect to temperature

ZSAZSA -Maximum value of computing increment times sum of oonduotars

divided by capacity

ZT -Partial derivative of Z withrespeot of l_eesm_e, .

©
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• Ap_ndix E

Derivation of the Energy Equation i

E-1

-

O

©

Theenergy equation simply assumes that input minus outpu_ is aooumu-

lation• Because of the small velocities involved_ the neglect of kinetic

ener_ seems Justified• Thus the equation is

d(21Ei) . .i_i_i .
Vi at " mi'IEi'i Pi-i+ ql-i_i

• l_n .

" miEi " _ " ql,i+i + Fi

On the left side of (E-l) is the rate Of energy aeoumulation in
/

volume element io The mE_ terms aoooun_ for bulk flow between elements

while the terms containing P represent work associated with moving mass

(_.i)

into or out of volume elements. The q terms account for conductive heat

flow. The F term represents input heatp as from an external leak or a

heater• Next %he left side of (E-l) maybe expanded using the law for

differentiation of a product

""iHi-h,i+i+'i.,
m,

The second term on the left side of (E-2) maybe replaoedby (8) to

give

v,Pi_" "i-i(_i-i" si)+ "J.(_i"Hi) "

+ q_i + Yl
(E-3)

...... - ....... , .... _...... _'_._._..... '-' '-,,.. ............. : '- . ......... _ ...........
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these amy be introduoed by the follovt_ relatio_,

E--H-- _. (E-_)

(E..5)

©

expression £o_* _he ener_D" equation,

(_)
dt " dt

_lt " q,'}i

The above :Is the same as (16) in the main text.

(F,.-7)

i.

i
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